|
小数在内存中是如何存储的? 文本关键字:小数、float、double、浮点数、精度
一、IEEE 754(二进制浮点数算术标准) 在学习进制转换时,我们了解到:我们经常使用的十进制数是转换为二进制进行存储的,只需要按照顺序将转换后的结果放在对应的位置上就行了。其实小数的存储也是基于二进制的,不过由于小数由整数部分和小数部分组成,为了方便表示和比较,会使用另外的方式来存储。
IEEE 754是最广泛使用的浮点数运算标准,在标准中规定了四种表示浮点数值的方式:
- 单精度:32位 - 4字节
- 双精度:64位 - 8字节
- 延伸单精度:43+
- 延伸双精度:79+
对于进制转换不清楚的同学可以进传送门:进制之间如何转换? 1. 存储结构 小数在内存中的存储由三部分组成,分别是符号、阶码(或称指数)、尾数。符号位我们很熟悉,只占一位,并且出现在最高位,0为正,1为负。 - 单精度:符号1位,阶码8位,尾数23位
- 双精度:符号1位,阶码11位,尾数52位
- 延伸精度很少使用,不做介绍
2. 存储方式 一个十进制的小数在进行存储时,首先要将整数部分与小数部分都转换为二进制,然后再整理成类似科学技术法的形式,即:移动小数点,使得小数点的左边只有一位,并且只可能为1(因为是二进制),小数点右侧的部分即为尾数部分,移动小数点的位数将会被记录在指数部分中。为了能够透彻的理解十进制小数转化存储在内容中的过程,我们还需要了解一个概念:阶码。
二、阶码(指数) 1. 定义 对于一个二进制数,我们总可以把它整理成:尾数 ?? 2的P次方的形式,其中P就被定义为阶码,我们也可以认为2是底数,P为指数,以整数形式表示。
2. 为什么小数被称作浮点数? 在早期计算机中,为了节省硬件资源,阶码P的值是被固定的,那么小数的表示形式也同时被固定了。规定第一位为符号位,小数点固定在第一位后面,这种小数是纯小数,被称为定点小数。
与定点小数相对的,如果阶码P可变,那这种小数表示法就被称为浮点表示,这样的数也就被称为浮点数了。更为重要的一点,P指明了小数点的位置。
3. 移码 明白了阶码的概念,也了解了浮点数的前世今生,那么我们大费周章的说这个概念干什么呢?没错,重点来了,就是为了这个移码的码制。在进行小数点移动时,需要先将十进制数转换为二进制,再去移动小数点,保证小数点左侧只有一位,且数值为1。
- 对于绝对值大于2的数,这个时候我们向左移动小数点,对应的指数为正数;
- 对于一个绝对值小于1的数,这个时候我们向右移动小数点,对应的指数为负数;
- 绝对值在1和2之间的数嘞?这个时候不用移动好叭。。。
那么问题就来了,我们的指数有的时候正,有的时候负。But!更为严重的问题是,在指数部分对应的区间并没有符号位这个东西,最前面的符号位代表的是小数本身的正负,这就使得存储和比较都变得困难,所以我们希望通过一种修正的方式避开正负号的问题。怎么做呢?以float为例,指数部分长度为8。
原有带符号位的8个bit的存储范围是-128 ~ 127(不明白的同学可以进传送门为什么一个byte的存储范围是-128~127?),也就是说可以记录-128次方到+127方之间的所有指数值。如果忽略符号位,把它也当做一个数据的存储位,那么范围就是0~255,我们取这个数的一半作为修正值,即:127,把每次移动小数点后获得的指数值都加上127。
- 小数点向左移动3位,对应的指数为+3,存入指数部分的值即为130的二进制表示
- 小数点向右移动2位,对应的指数为-2,存入指数部分的值即为125的二进制表示
这样的好处就是避开了符号的问题,同时,原有的指数的值也得到的了保存,取出的时候减掉127就好了。那么直观的讲,原来的范围是-128 ~ 127,加上127之后范围应该变成-1 ~ 254,貌似对应关系有问题呀~这其实是一个很简单的二进制换算问题,对于有符号数,最高位为符号位,用1代表负数,-128的补码为:1000 0000,但是这在无符号数眼里的值为128,-1的补码为:1111 1111,但是在无符号数眼里值为255。所以我们不能直接通过加减法得出这个取值范围,而应该结合二进制存储的规则(不明白的同学可以二进传送门查看补码相关的知识:为什么一个byte的存储范围是-128~127?)。
三、小数的进制转换 说了这么久,我们用几个例子来给大家演示一下,会给大家列出小数在内存中存储的完整表示,在这之前还是需要先学习一下十进制小数应该怎么转换为二进制(读者内心:我太难了。。。)。
1. 十进制转二进制 小数分为整数部分和小数部分,整数部分的转换照常进行,不断的除2得到,小数部分刚好是不断的乘2得到,一直到小数部分为0,或者已经达到了对应的精度,以69.3125为例。
- 整数部分:69 = 64 + 4 + 1 = 2^6 + 2^2 + 2^0
- 小数部分:转换过程如下 -> 不断乘2,取出结果中的整数部分
- 最终转换结果:0100 0101.0101
2. 二进制转十进制 由二进制转换为十进制比较简单,就是运算规则做相反的运算,整数部分是做除法得到的,那么转换回去的时候就是做乘法,小数部分是做乘法得到的,那么转换回去的时候就做除法,以0100 0101.0101为例。 - 整数部分:2^6 + 2^2 + 2^0 = 64 + 4 + 1 = 69
- 小数部分:0 x 2^-1 + 1 x 2^-2 + 0 x 2^-3 + 1 x 2^-4 = 0.3125
可以看到规律其实是统一的,就是从左至右根据二进制数乘以2的n次方,从左至右n的值不断递减,在个位处,n的值为0,进入小数部分n的值为负数,在运算上的体现为除法。
3. 小数在内存中的存储表示 9.9的二进制表示:1100011.111001100110011001100110011001100110011001101。现在我们需要将小数点左移6位,对应的指数值为+6。此时小数点右侧的位数为51位,这些将会被存放在尾数部分,如果使用double类型可以将数据全部记录,但是如果使用float类型,由于尾数部分只有23位,所有只能记录部分的数据,误差也就产生了!
整理一下,符号位为0,指数部分为6+127=133,尾数部分直接丢进去,能装多少装多少,以float为例。
最终表示为:0 10000101 10001111100110011001100
0.226的二进制表示:0.0011100111011011001000101101000011100101011000000100001。此时小数点需要右移3位,对应的指数值为-3,剩下的尾数部分同样能塞多少塞多少。
整理一下,符号位为0,指数部分为-3+127=124,以float为例。
最终表示为:0 1111100 11001110110110010001011
四、float与double 1. 精度范围 从上面的例子我们可以看到,当一个小数在存储的过程中,误差就已经产生了,而且由于是转换为二进制存储,我们很难对所有的小数进行判断是否在存储时丢失了精度。看下面几个例子:
public static void main(String[] args) {
Float f1 = 99.99999f;
System.out.println(f1);// 输出结果:99.99999
// 貌似很正常啊,其实float的内心慌的一批
Float f2 = 99.999999f;
System.out.println(f2);// 输出结果:100.0
// 此时终于暴露了吧?在存储时就已经丢失了精度,在参与小数计算时更加暴露无遗
} |
- float精度:小数点后6~7位
- double精度:小数点后15~16位
丢失精度的原因经过上面的分析和例子相信大家应该很清楚了,我们按照常规流程进行二进制转换后得到的尾数部分可能很长,但是以单精度或双精度进行存储时只能存储一部分,那么必然导致精度的丢失。
2. 解决精度不足 float和double作为基本数据类型使用起来当然是比较方便,但是精度的问题会造成不准确,虽然我们可以通过使用保留几位小数的方式勉强应对,但是为了保证高精度通常会使用BigDecimal,具体用法不在此赘述,将在后续文章中说明。
3. 与长整型的比较 我们在接触基本数据类型的时候曾经碰到过一个大哥大,曾以为能够装进去很大很大的整数,毕竟是8字节的身材,但是仔细那么一比较,存储范围竟然还比不过4字节的float,更不要说同等身材的double了。
- long的存储范围:-2^63 ~ 2^63 - 1
- float:-2^128 ~ 2^128
- double:-2^1024 ~ 2^1024
以上数据只是表示一个量级,不能代表浮点数的精确范围,不过这也足够碾压long类型了,以至于long类型可以隐式转换为float,这就解决了我们的一个疑问,为什么4字节的float存储范围比8字节的long类型还要大?自然是存储方式不同。
----------------------------
原文链接:https://blog.51cto.com/10984944/2475898
作者:朱晏辰
程序猿的技术大观园:www.javathinker.net
[这个贴子最后由 flybird 在 2020-03-12 12:53:42 重新编辑]
|
|